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ABSTRACT:—The usefulness of Artificial Neural Network Sys-
tems (ANNW) to predict the stability of vegetable oil based on
chemical composition was evaluated. The training set, com-
prised of a composition of major and minor components of veg-
etable oil as inputs and as outputs, induction period and values
of slopes for initiation and propagation, was measured by oxy-
gen consumption. The best predictability was achieved for oils
stored at 35°C with light exposure, when the major fatty acids,
chlorophylls, tocopherols, tocotrienols, and metals were used
as predictors. For oils stored at 65°C without light, a good pre-
dictability was obtained when composition of the major fatty
acids and the amounts of tocopherols and tocotrienols were
used. These results suggest that vegetable oil stability can be
successfully predicted by ANNW when partial oil composition
is known.
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Lipid oxidation leads to rancidity, and it is the decisive factor
determining the shelf life of food products, even when the fat
content is low. A substantive amount of work has been con-
ducted to better understand the mechanism of oxidation of
polyunsaturated fatty acids, antioxidants action, and the ef-
fect of decomposition products of oxidized lipids on the for-
mation of off-flavors. Oxidative stability of vegetable oil is a
function of the presence of unsaturated fatty acids, oxygen,
endogenous minor components, and conditions of storage (1). 

Neural Networks is a data-processing technique simulat-
ing human brain analytical functions, which has the ability to
learn by experience (2). This system is useful when no exact
mathematical relationship is available and also to solve linear
and nonlinear prediction problems (3–5). Artificial Neural
Network Systems (ANNW) are usually composed of com-
puter-simulated layers of processing elements known as arti-

ficial neurons (6). Those neurons receive input signals and
pass them to the hidden layers through a set of weighted con-
nections. Each neuron can process a piece of information at
the same time as other units do. The processing of informa-
tion occurs in parallel and is distributed throughout each unit
composing the network. The neuron transfers the weighted
sum through a sigmoidal function that compresses a wide do-
main of inputs into a limited range of outputs (1,5,7). During
the training phase of the ANNW, the predicted output of the
system is subsequently compared with the actual output, and
the weights of connection between the processing units are
modified to minimize the deviations. This is accomplished by
a feed-forward layered structure, where each unit in a given
layer is fully connected to every unit in the succeeding layer.
This structure includes the forward propagation of neuron ac-
tivation and the backward propagation of the error, with con-
comitant adjustments to the connections’ weights. In this
back-propagation algorithm concept, the ANNW continues
to make changes to internal connections by a trial-and-error
process until a defined accuracy has been achieved (3,5,8,9).
Once the system has been trained by a set of training facts (in-
puts and outputs), a new set of inputs can be presented and
the ANNW will predict the corresponding value of outputs
(2,10). Borggaard and Thodberg (4) demonstrated that
ANNW are able to predict well, based on new observations
(inputs and outputs) even if they fall outside the range of the
training set.

Recently, Artificial Neural Networks have been success-
fully applied in many areas of food quality assessment.
Goodacre and Kell (11,12) assessed the adulteration of olive
oils using pyrolysis mass spectra of oils and ANNW. Zhang
et al. (13) presented ANNW models for predicting the sec-
ondary structure of globular proteins. Arteaga and Nakai (6)
applied neural network and physicochemical properties of
food-related proteins to predict foam capacity and stability,
and the emulsion activity index. These authors reported that
ANNW had better prediction ability than Principal Compo-
nent Regression (PCR). Horimoto et al. (14) used ANNW
with several variables to predict the volume of bread loafs
made from different wheat cultivars. Vallejo-Cordoba et al.
(9) used a Neural Network system to predict milk shelf life
applying multivariate interpretation of gas chromatographic
profiles of flavor components and sensory data. These authors

*To whom correspondence should be addressed. 
E-mail: przybyl@ms.umanitoba.ca
1Current address: Federal University of Pelotas, Pelotas/RS, CP-354,
CEP:96010900, Brasil.

Predicting Oxidative Stability of Vegetable Oils
Using Neural Network System and

Endogenous Oil Components
Roman Przybylski* and Rui C. Zambiazi1

Copyright © 2000 by AOCS Press 925 JAOCS, Vol. 77, no. 9 (2000)

JAOCS 9294/1-7/8 scans  7/20/04  3:32 PM  Page 925



reported that ANNW were better able to predict shelf life than
PCR. Ruan et al. (8) showed high predictability of the rheo-
logical properties of dough from the torque developed during
mixing using ANNW.

The application of ANNW to predict oxidative stability of
oils based on their composition is lacking. The main objec-
tive of this work was to evaluate the ability of ANNW to pre-
dict vegetable oil oxidative stability utilizing composition and
content of endogenous oil components.

MATERIALS AND METHODS

Composition of the oils. Thirty-three vegetable oils were used
in this study, including standard and genetically modified va-
rieties of many oils. These included BOR, borage, cold-
pressed; CAO, regular canola, refined, bleached, and deodor-
ized (RBD), produced from third-grade seeds; CAN, regular
canola, RBD; CAS, regular canola, RBD; CAR, low-linolenic
canola, RBD; CHO, high-oleic canola, RBD; COL, high-oleic
low-linolenic canola, RBD; COR, corn, RBD; CRN, corn,
RBD; CRW, corn, RBD; COC, coconut, pressed and refined;
CTO, cottonseed, RBD; COT, cottonseed, RBD; EPR,
evening primrose, cold-pressed; FCO, regular flax, cold-
pressed; FLL, low-linolenic flax, RBD; OEV, virgin olive,
cold-pressed; OPR, olive pomace, RBD; ORF, olive, RBD;
PAL, palm, refined; PLG, red palm, refined; PLK, palm ker-
nel, refined; PEA, peanut, RBD; PNT, peanut, RBD and RIO,
rice bran, RBD; RBO, rice bran, RBD; RWO, rice bran, RBD
and winterized; SUN, regular sunflower, RBD; SUR, regular
sunflower, RBD; SHO, high-oleic sunflower, RBD; SOY,
soybean, RBD; SYS, soybean, RBD; SYB, soybean, RBD.
The same oils with different symbols indicate different
processors.

Selected oils were analyzed for fatty acid composition
(AOCS Ce 1-62)(15), free fatty acids (AOCS Ca 5a-40)(15),
neutral lipids, phospholipids, glycolipids (16), tocopherols
and tocotrienols (17), sterols (18), chlorophyll (AOCS Cd
13d-55)(15), carotenoids (19), metals (AOCS Cd 18-79)(15),

phenolic acids (20,21), and triglycerides (22). 
Oxygen consumption. The oxidative stability of oils was

evaluated by measurement of oxygen consumption during ac-
celerated storage using the modified procedure described by
Jung et al. (23,24). Briefly, samples of 10 mL of oil were
placed in 60-mL serological bottles, providing a ratio of sur-
face area to volume equal to one. Air-tight sealed bottles with
oils were stored in the presence and absence of light at 35 and
at 65°C, respectively. Oxygen content in the head space was
measured every 12 h for a period of 14 d by injecting 20 µL
of gases in duplicate. Permanent gases were separated on a
column with molecular sieve packing 5A (1.25 mm × 2 m,
80/100 mesh, Supelco, Bellefonte, PA) using hydrogen as a
carrier gas and a thermal conductivity detector. Figures 1 and
2 present typical oxygen consumption curves for oils stored
with and without light exposure, respectively.

Artificial Neural Networks. For all analysis software,
BrainMaker (California Scientific Software, Nevada City,
CA) was used. The oils were separated into two sets, one set
was used as training data, while the other was used to predict
values. About half of the analyzed 33 oils were assigned to
train the program, while the other oils were used to predict
the values related to their stability. The oil composition was
used as input data (predictors), while the values of induction
periods (ip), slopes of initiation (k1), and slopes of propaga-
tion (k2), obtained from oxygen uptake measurements, served
as outputs.

The ANNW software was trained using the standard back-
propagation algorithm and automatically tested after each 20
runs during the training. The training was stopped when the
squared error reached a value of 0.05. The number of hidden
neurons was initially determined by the relation: (inputs +
outputs)/2 (25). During training, software was set up to auto-
matically prune neurons after each training section. The
learning and smoothing rates were set between 0.08 and 0.1,
while the training tolerance was set at 0.1. Correlation coeffi-
cients (r2) and standard error of the estimate (SEE) were cal-
culated between predicted and experimental values. 
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FIG. 1. Consumption of oxygen by selected oils during storage at 35°C
with light presence. For description see Materials and Methods section.
LLHO, low-linolenic high-oleic.

Storage Time (h)

FIG. 2. Oxygen consumption during storage of selected oils at 65°C
without light presence. For description see Materials and Methods sec-
tion. See Figure 1 for abbreviation.

Storage Time (h)
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Statistical analysis. Statistical analyses were performed using
statistical software package Statistica (Statsoft, Tulsa, OK).

RESULTS AND DISCUSSION

The proper functioning of a Neural Network is highly depen-
dent on the way signals are propagated through the network.
During the program training, several settings can be adjusted
in order to improve the learning capacity, and consequently
improve the predictability of the program. In general, settings
are not known beforehand, and the initial choice of parame-
ters is empirical and differs for varying topologies and pat-
tern sets (10,14).

The suitable number of neurons and hidden layers is es-
sential to obtain a well trained program. It is recommended
that one hidden layer be the first choice for any practical feed-
forward network design. More hidden layers may cause over-
fitting, since the network focuses excessively on the idiosyn-
crasies of individual samples; however, with too few hidden
layers a network may not become trained. The smoothing fac-
tor, learning rate, and noise are also reported as important pa-
rameters in a training process (5,10,25).

In the present study, better results were obtained when the
following parameters were applied: hidden layers 1–2,
smoothing factors 0.8–1.0, noise 0–0.05, and learning rates
0.8–1.0. These values were similar to settings published for
different applications of ANNW in food quality assessment
(6,8,14). It was also observed that the training tolerance,
which specifies how close each output of the network must
be to the empirical response to be considered correct,
markedly affected the training time. As reported by Horimoto
et al. (14), smaller tolerances required a longer amount of
time to train the program. The data sets L1, L3, L4, L9, D1, D2,
and D8 (Table 1) started at a training tolerance of 2.0 and
gradually decreased to 1.0. For all other networks, 1.0 was
used as the training tolerance.

Predicting stability of vegetable oils during storage with the
presence of light. Using a cluster analysis, oils were placed into
groups with different oxidative stability, based on  k2 (Fig. 3)
Eighteen oils, representing cluster groups, were selected to
train the ANNW system, namely, FCO, EPR, CAO, SUR,
RBO, SOY, FLL, CTO, CAS, SHO, CAR, ORF, OEV, PLG,
COR, PAL, PNT, and COC (Table 1). The other 15 oils were
used to test ability of the program to predict the values of k2. 

Several groups of oil components were tested as inputs to
verify their ability to predict the stability as measured by k2
for oxygen consumption measurement. Initially, all individ-
ual components measured in the oils, group L1 (Table 2), were
used as inputs, and the values of k2 were used as outputs.
After the program was trained, the remaining 15 oils were
used to evaluate the ability of this system to predict this para-
meter. The r2 obtained was 0.70 (Table 2). Due to the rela-
tively low predictability, another set of variables was selected
to retrain the program, the total amount for each group of
components was selected (L2, Table 1), and a slight improve-
ment in predictability was observed (r2 = 0.75; Table 2). Ho-

rimoto et al. (14) found that effective prediction by ANNW
can be achieved when the r2 between predicted and measured
values is over 0.90. Therefore, other sets of components
(L3–L5, Table 2) were individually used to train the program.
Based on previous results, the total amount of the components
from the particular group was chosen instead of the individ-
ual component amounts. For each set of components, the val-
ues of k2 were again predicted by ANNW for the 15 oils
tested. As seen on Table 2, a slight improvement in pre-
dictability of k2 was observed, but still the best r2 of 0.81, was
obtained for group L4.

To improve predictability, the values used to train the pro-
gram were altered. Two oils, namely PLG and OEV, were re-
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FIG. 3. Cluster analysis of vegetable oils based on slopes of propagation
(k2) as measured during storage at 65°C without light presence.  PLK,
palm kernel, refined; COC, coconut, pressed and refined; CRN, corn,
refined, bleached, and deodorized (RBD); SYS, soybean, RBD; CRW,
corn, RBD; COR, corn, RBD; OEV, virgin olive, cold-pressed; CAO, reg-
ular canola, RBD, produced from third-grade seeds; PLG, red palm, re-
fined; EPR, evening primrose, cold-pressed; FCO, regular flax, cold-
pressed; SOY, soybean, RBD; COT, cottonseed, RBD; PNT, peanut,
RBD; PEA, peanut, RBD; FLL, low-linolenic flax, RBD; ORF, olive, RBD;
PAL, palm, refined; COL, high-oleic low-linolenic canola, RBD; RIO,
rice bran, RBD; CHO, high-oleic canola, RBD; SHO, high-oleic sun-
flower, RBD; CAR, low-linolenic canola, RBD; CAS, regular canola,
RBD; CAN, regular canola, RBD; SUN, regular sunflower, RBD; RBO,
rice bran, RBD; RWO, rice bran, RBD and winterized; OPR, olive po-
mace, RBD; CTO, cottonseed, RBD; SYB, soybean, RBD; SUR, regular
sunflower, RBD; BOR, borage, cold-pressed. The same oils with differ-
ent symbols indicate different processors.
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placed by CHO and OPR in the training set. Both replaced
oils were outliers in the total amounts of carotenoids and phe-
nolic compounds, respectively. The program was retrained
using this new set of oils with the same variables, contribu-
tion of major fatty acids and the amounts of tocopherols, to-
cotrienols, chlorophylls, and metals (L6, Table 1) as predic-
tors. By replacing outliers, predictability as measured by r2

increased to 0.87 (Table 2).
Lawrence and Peterson (25) proposed that using the same

number of variables and cases for the training of ANNW can
provide better predictability. In the following experiment, the
number of oils was equal to the number of groups of components
used to train the program. The size of the training oil set was in-
creased to 22, including RWO, SYB, BOR and CRW, oils while
the number of components was left the same as in the previous
group (L7, Table 1). A larger r2 (0.95) was obtained, and the pre-
dictability of oxidative stability based on composition was very
close to the experimental data generated during oxygen con-
sumption measurements (L7, Table 2). Among individual oils,
OEV had the highest deviation from the experimental data de-
scribed by standard error of estimation of 18.9 × 10–3, whereas
for the rest of the oils the error was 5.3 × 10–3 (Fig. 4). 

Further reduction of the number of oil components used to
train and predict oil oxidative stability did not improved pre-

dictability (L8, L9; Tables 1 and 2). Two new sets of compo-
nents were tested. Their fatty acid composition with and with-
out the total amount of tocopherols and chlorophylls was
used. The last group represents the claim that fatty acids are
responsible for oils/fats oxidative deterioration (26). Using
fatty acid composition and the amounts of tocopherols and
chlorophylls obtained, the r2 was 0.59, while for fatty acids
alone it was 0.44. This indicates that using fatty acid compo-
sition as a predictor can only describe half of the oxidative
stability of the oil (Table 2).

Predictability of stability for oils stored without light at
65°C. As can be noticed from Figure 2, the induction period
for many oils was observed when stored without light pres-
ence. This is contrary to the experiments involving storage
with light exposure where propagation started from the be-
ginning of the storage time (Fig. 1). This indicates that light
and photosensitive components play important roles as oxi-
dation initiators. The model, applied to 22 oils stored with
light presence, was applied to train the ANNW system for
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TABLE 1 
Groups of Oil Components Used for Training the Artificial Neural Network for Oils Stored with Light Exposure

Groups Oil components

L1 Contribution of all individual FA, FFA, NL, PL, GL, tocopherols, tocotrienols, sterols, metals, chlorophyll, carotenoids, and phenolic 
acids

L2 D1 Contribution of linolenic, linoleic, oleic acids; SFA; and the total amount of NL, PL, GL, tocopherols, tocotrienols, sterols,
chlorophylls, carotenoids, metals, and phenolic acids

L3 D2 Contribution of oleic, linoleic, linolenic acids; SFA; and the total amount of tocopherols and tocotrienols, chlorophyll, metals,
sterols, and phospholipids

L4 D3 Contribution of oleic, linoleic, linolenic acids; SFA; and the total amount of tocopherols and tocotrienols, metals, sterols, and
phospholipids

L5 D4 Contribution of oleic, linoleic, linolenic acids; SFA; and the total amount of tocopherols and tocotrienols, chlorophyll, and metals
L6 D5 Contribution of oleic, linoleic, linolenic acids; SFA; and the total amount of tocopherols, tocotrienols, chlorophylls, and metals
L7 D6 Contribution of oleic, linoleic, linolenic acids; SFA; and the total amount of tocopherols, tocotrienols, chlorophylls, and metals
L8 D7 Contribution of oleic, linoleic, linolenic acids; SFA; and the total amount of tocopherols, tocotrienols, and chlorophylls. For training 

purposes, 22 oils were used
L9 D8 Contribution of oleic, linoleic, linolenic acids; and SFA. For training purposes, 22 oils were used.

Li and Di, sets of oil components used for training for oils stored with and without light exposure, respectively; FA, fatty acids; FFA, free fatty acids; NL, neu-
tral lipids; PL, phospholipids; GL, glycolipids; SFA, saturated fatty acids contribution.

TABLE 2 
Correlation Coefficients (r2) and the Standard Errors of Estimation
(SEE) for Predicted and Experimental Values of Propagation Slope (ki)
for Selected Group of Oil Components

Group of oil componentsa r2 SEE (× 10–3)

L1 0.7038 4.9
L2 0.7519 3.3
L3 0.6827 8.5
L4 0.8135 6.9
L5 0.8029 3.0
L6 0.8746 2.9
L7 0.9554 3.1
L8 0.5939 5.6 
L9 0.4458 11.7

aFor abbreviations, see Table 1.

FIG. 4. Correlation between measured and predicted values of slope of
propagation (k2) obtained during storage with light at 35°C. For descrip-
tion see Materials and Methods section. Error bars represent standard
error of estimation. See Figure 1 for abbreviation. (—) Regression line
(r2 = 0.955); (.....) 95% confidence levels.

Canola
LLHO Canola
Corn
Cottonseed
Virgin Olive
Palm
Palm Kernel
Peanut
Rice Bran

Sunflower
Soybean
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predicting oxidative stability during storage without light
presence. Similarly to what was done before, several groups
of oil components were selected to test the predictability
using ANNW (D1–D8, Table 1). 

Fatty acid composition and the total amount of compo-
nents (D1, Table 2) were used as inputs and the values of k1,
k2, and the ip were used simultaneously as outputs (three out-
puts). The correlation coefficients between the values pre-
dicted by ANNW and the experimental values from oxygen
consumption are presented in Table 3. Values below 0.90
were obtained for r2 indicating relatively low predictability. 

Due to the low r2 observed for the prediction of k1, k2, and
ip simultaneously, two new data sets (D2 and D3, Table 1)
were applied in order to find which oil’s endogenous compo-
nents can better predict stability. As can be noticed from
Table 3, even lower r2 were obtained for these new composi-
tional variables. Even though the ANNW can predict more
than one value (one output) at the same time, this program is
mostly used to predict a single output (10). For the next at-
tempt, the program was trained to predict each of the men-
tioned parameters separately, using a set of inputs comprising
the major fatty acid composition and total amounts of toco-
pherols, tocotrienols, chlorophylls, and metals (D4, Table 3).
The r2 between predicted and experimental values for the ip
was markedly improved (r2 = 0.91), but for k1 and k2, no im-
provement was observed (Table 3). Other sets of components
were tested (D5, D6, D7, and D8, Table 1) to find the oil com-
ponents that could give the best predictability. The best value
of r2 = 0.95 was achieved when composition of the major
fatty acid with the total amounts of tocopherols, tocotrienols,
metals, sterols, and phospholipids was applied (D5, Table 3).
Among individual oils, the highest SEE was found for PLG,
21.1 × 10–3, while for other oils observed values were below
9.8 × 10–3 (Fig. 5).

Since low predictability was obtained for k1 and k2, data
from oxygen consumption representing initiation and propa-
gation periods were combined into a single regression. Ob-
tained slopes (k3) were used as outputs (Table 4) with the fol-
lowing groups of oil components as predictors: D2, D3, D6,
D7, and D8 (Table 1). Each group of components was run sep-

arately with the same output, and after training the system
was tested for efficiency in predicting oxidative stability of
oils. The best r2 between predicted and measured values was
found when the composition of major fatty acids and the total
amounts of tocopherols, tocotrienols, metals, sterols, and
phospholipids were used (Table 5, D2). The r2 obtained for k3
as outputs were more satisfactory than for k1, and k2 when
they were applied individually (Tables 3 and 5). 

The previously discussed set of components that produced
the best predictability was used to predict k3 values for oils and
compare them to the values measured by oxygen consumption
(Fig. 6). The sets of oil components D2 and D5 (Table 2) con-
sisted of the same components, but were used for evaluation of
different parameters (Table 1). These oil components gave the
highest r2 of 0.92 and 0.95, respectively (Table 5, D2; Table 3,
D5). The reduced number of oil components to fatty acids and
the total amounts of saturated fatty acids, tocopherol, and to-
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TABLE 3 
r2 and the SEE for Predicted and Experimental Values of Parameters 
Calculated from Oxygen Consumption Measurements During 
Oil Storage Without Light Exposure

Groups of oil
r2 SEE (× 10–3) SEE

componentsa k1 k2 ip k1 k2 ip

D1 0.7168 0.6542 0.7017 7.5 9.2 6.7
D2 0.6817 0.5748 0.5448 6.4 7.3 11.3
D3 0.6357 0.6862 0.6736 5.1 9.7 8.4
D4 0.6953 0.6381 0.9148 6.1 5.9 1.5
D5 — — 0.9521 — — 3.1
D6 — — 0.8875 — — 2.8
D7 — — 0.9139 — — 1.4
D8 — — 0.5362 — — 14.3 
ak1, slope of initiation period; k2, slope of propagation period; ip, induction
period; for other abbreviations, see Table 2.

FIG. 5. Correlation between measured and predicted values of initia-
tion period obtained during storage at 65°C. For description see Materi-
als and Methods section. Error bars represent standard error of estima-
tion calculated by Neural Network for predicted data and standard de-
viation for measured values. See Figure 1 for abbreviations.
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Regression (r2 = 0.9556)
Confidence (95%)

Canola
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Corn
Cottonseed
Virgin Olive
Palm
Palm Kernel
Peanut
Rice Bran

TABLE 4 
Values of k1 and k2, ip, and Combined Slope (k3)
Used to Train the Neural Network System 

Oilsa k1 k2 ip(h) k3

CAN –0.0151 –0.0953 38.6 –0.0845
COL –0.0083 –0.0844 87.1 –0.0541
CRW –0.0101 –0.1090 79.9 –0.0615
COT –0.0153 –0.1258 37.5 –0.0910
OEV –0.0140 –0.0234 79.1 –0.0203
PLG –0.0000 –0.0540 0.0 –0.0540
PEA –0.0123 –0.0483 78.1 –0.0370
RIO –0.0163 –0.0748 68.1 –0.0550
SUN –0.0240 –0.1160 27.6 –0.1123
SYS –0.0083 –0.1300 51.5 –0.0990
aCAN, regular canola, refined, bleached, and deodorized (RBD); COL, high-
oleic low-linolenic canola, RBD; CRW, corn, RBD; COT, cottonseed, RBD;
OEV, virgin olive, cold pressed; PLG, red palm, refined; PEA, peanut, RBD;
RIO, rice bran, RBD; SUN, regular sunflower, RBD; SYS, soybean, RBD. See
Table 3 for other abbreviation.
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cotrienol (D7) gave the r2 of 0.88 for predicted value when com-
pared to the measured value. Using only fatty acids as predic-
tors showed the lowest ability to predict oxidative stability of
oils by the ANNW system (Table 5, D8).

The results from this study suggest that oil stability can be
successfully predicted by ANNW using a few oil components
as predictors. For both storage conditions, the use of all oil
components did not improve predictability of any parameter
measured by oxygen consumption in this study. These results
suggest that many of the oil components could not be directly
involved in the oil oxidative stability, although they can have
synergistic or antagonistic effects on other components. 

The best predictors for the k2, as measured by oxygen con-
sumption during storage with light exposure, were the combi-
nation of fatty acids composition, and the amounts of chloro-
phyll, tocopherols, tocotrienols, and metals. This selection veri-
fied recent knowledge about the effect of some minor
components on oil oxidative stability, where pigments and met-
als were found to be initiators of the oxidation process (27). Ad-
ditionally, antioxidants such as tocopherols and tocotrienols
were described as important factors affecting oil oxidative dete-
rioration (1). As mentioned previously, composition of fatty
acids can only partially explain oil oxidative stability during
storage. Composition of fatty acids, the amounts of tocopherols,
tocotrienols, sterols, metals, and phospholipids were found to
be the best descriptors for the prediction of ip during storage

without light exposure. In this case, sterols and phospholipids
were found important in describing this behavior of oils. Phos-
pholipids can probably form complexes with metals, and in this
way keep them active and/or available as catalysts (27). Sterols,
as found before, can also be oxidized. This means that sterols
can be treated as possible stimulators of the oxidation and/or in-
termediates in free radical formation (28). 

Fatty acid composition with the total amounts of tocoph-
erols and tocotrienols can also be used to predict oxidative sta-
bility, as measured by k2, where r2 between predicted and ex-
perimental values obtained was 0.91. These results suggest that
a good predictability of stability of oils stored under both con-
ditions can be obtained by using their fatty acid composition
and the total content of tocopherols and tocotrienols. Oxidative
stability of vegetable oils can be related to more than unsatu-
rated fatty acids deterioration, and more research is needed to
explore the effect of other endogenous components.
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FIG. 6. Correlation between measured and predicted values of com-
bined slope of propagation (k3) during storage at 65°C without light. For
description see methods. Error bars represent standard error of estima-
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